Institute of Modern Studies
Search Courses: Home | Site Map
  Home
  About us
  Mission Statement
  Aims Objectives
  One Year Diploma
 
Medical Technology
 
Certified Professional
 
Fast Track Education
 
Admission procedure
 
Online Registration
 
Fee Structure
 
Affiliations
  Inquiry
  Contact us

One & Two Years Diploma

Course Detail
Engineering (Required min one Year Experience) >> Diploma in Piping & Pipeline Engineering
Duration: One Year & Two Years (Double fee)
Mode of Study: Distance Learning Education/Self Home Based Study
Total Fee(PKR):
(For Pakistani Students)
27500
Total Fee($ US):
(Overseas Students)
350
Eligibility: Min Matric
Document Required: Two set of Educational Documents, Three CNIC Copies, Three Photograph, Original Bank Deposit slip
Modules: Module 1 Module 2

CHAPTER 1 CODES, STANDARDS AND PRACTICE

1.1 A Brief History of Piping Technology 1.2 National Codes, Standards and Guides 1.3 Piping and Pipeline Codes 1.4 Scope of ASME B31 Codes 1.5 Boiler and Pressure Vessel Code 1.6 Federal and State Laws 1.7 ASME Council on Codes and Standards 1.8 ASME B16 Standards 1.9 API Standards and Recommended Practices 1.10 Manufacturers Standardization Society 1.11 Pipe Fabrication Institute Standards 1.12 American Institute of Steel Construction 1.13 American Concrete Institute 1.14NACE 1.15 Material Institutes 1.16 National Board 1.17 Flow Control Institute Standard 1.18 Hydraulic Institute Pump Standards 1.19 References

CHAPTER 2 FUNDAMENTALS

2.1 Competence 2.2 At the Engineering Level 2.2.1 Materials 2.2.2 Design 2.2.2.1 System Design 2.2.2.2 Component Design 2.2.3 Construction 2.2.4 Quality Control Inspections 2.2.5 Preoperational Testing 2.2.5.1 Mechanical Testing 2.2.5.2 Operational Testing 2.2.6 Maintenance 2.2.7 Operation 2.3 At the Corporate Level

CHAPTER 3 MATERIALS Introduction:

A Good Pastry 3.1 Ferrous Pipe 3.1.1 Wrought Iron 3.1.2 Cast Iron 3.1.3 Steel Pipe and Fittings 3.1.3.1 Essential Characteristics 3.1.3.2 Carbon Steels 3.1.3.3 Alloy Steels 3.1.3.4 High Alloy Steels 3.1.4 Steel Line Pipe 3.2 Non-Ferrous Pipe 3.2.1 Aluminum Alloys 3.2.2 Nickel Alloys 3.2.3 Copper Alloys 3.3 Fabrication of Steel Pipe 3.3.1 Pipe Size 3.3.2 Seamless Pipe 3.3.3 Seam Welded Pipe 3.3.4 Documentation 3.3.5 Microstructure 3.4 Fabrication of Pipe Fittings and Components 3.4.1 Forging 3.4.2 Casting 3.4.3 Sheet Metal 3.4.4 Pipe Specifications 3.4.5 Machining and Finishing 3.4.6 Base Metal Imperfections 3.5 Mechanical Properties 3.5.1 Strength 3.5.2 Hardness 3.5.3 Toughness 3.5.3.1 Charpy V-Notch Toughness 3.5.3.2 Drop Weight Test 3.5.3.3 Fracture Toughness 3.5.4 Fatigue Strength 3.5.5 Physical Properties 3.6 Procurement 3.6.1 Procurement Specification 3.6.2 Supplier Assessment 3.7 References

CHAPTER 4 INTERNAL PRESSURE

4.1 Pressure Design of Piping 4.1.1 Thin Wall Approximation 4.1.2 Pipeline Design Equation 4.1.3 Yield and Wall Thickness 4.2 Pressure Design of Plant Piping 4.2.1 Lame's Formula 4.2.2 Early Design Equation 4.2.3 Piping Design Equations 4.2.4 Allowable Stress 4.2.5 Wall Thickness Allowance 4.3 Yield and Burst Pressure 4.3.1 The Von Mises Yield Pressure 4.3.2 Burst Pressure 4.4 Pressure Design of Plastic Pipe 4.5 Pressure Rating 4.5.1 Pressure Rating 4.5.2 Malleable Iron Threaded Fittings 4.5.3 Steel Butt Welded Fittings 4.5.4 Steel Flange Ratings 4.5.5 Socket Welding and Threaded Fittings 4.5.6 Valves 4.5.6.1 Shell Strength 4.5.6.2 Seat Tightness 4.5.7 Unlisted Components 4.6 Pressure Stress in Fittings 4.6.1 Pipe Elbows and Bends 4.6.2 Branch Connections and Nozzles 4.6.3 Reinforcement of Branch Connections 4.6.4 End Fillets 4.7 High Pressure Design 4.8 Design Pressure 4.8.1 Design Scenarios 4.8.2 Pressure Excursions 4.9 Over-Pressure Protection 4.10 Burst Energy 4.11 Pipe Specification 4.12 Valve Specification 4.13 References

CHAPTER 5 EXTERNAL PRESSURE

5.1 Buckling Pressure 5.2 ASME Code Design 5.3 References

CHAPTER 6 LAYOUT AND SUPPORTS

6.1 Spacing of Pipe Supports 6.2 Sustained Stress 6.3 Stress Indices 6.4 Design Standards 6.5 Selection of Pipe Supports 6.5.1 Variable Spring 6.5.2 Constant Load Hanger 6.5.3 Rigid Frames 6.5.4 Road Hangers 6.5.5 Pipe Rolls 6.5.6 Rigid Struts 6.5.7 Vibration Dampers 6.5.8 Snubbers 6.5.9 Anchors 6.5.10 Saddles 6.6 Design of Standard Support 6.7 Design of Steel Frames 6.7.1 Design 6.7.2 Construction 6.8 Anchorage to Concrete 6.9 Layout Rules of Good Practice 6.9.1 Equipment Elevations 6.9.2 Equipment Spacing 6.9.3 Piping 6.9.4 Valves 6.9.5 Pump Piping 6.9.6 Compressor Piping 6.10 References

CHAPTER 7 FLEXIBILITY AND FATIGUE

7.1 Layout for Flexibility 7.2 Simplified Flexibility Analysis 7.3 Fatigue 7.4 Smooth Specimen Fatigue 7.5 Pipe Component Fatigue 7.6 Fatigue Strength of Socket Welds 7.7 Fatigue Strength of Butt Welds 7.8 ASME B31 Fatigue Rules 7.9 Fracture Mechanics Approach 7.10 Corrosion Fatigue 7.11 Shakedown 7.12 Cold Spring 7.13 Through-Wall Temperatures 7.14 Creep Damage 7.15 Pipe Insulation 7.16 Expansion Joints 7.17 References

CHAPTER 8 VIBRATION

8.1 Root Cause 8.2 Mechanically Induced Vibration 8.3 Vibration Analysis 8.4 Hydraulic Induced Vibration 8.4.1 Vane and Piston Motion 8.4.2 Turbulence Induced Vibration 8.4.3 Cavitation and Air Pockets 8.4.4 Acoustic Resonance 8.4.5 Breathing Mode 8.4.6 Valve Noise 8.5 Measuring Vibration 8.5.1 Measuring Displacement 8.5.2 Measuring Velocity 8.5.3 Measuring Acceleration 8.5.4 Strain Gages 8.5.5 Signal Conditioners and Analyzers 8.6 Assessing Vibration Severity 8.6.1 Severity Charts 8.6.2 Pipe Vibration Analysis 8.7 Prevention and Mitigation 8.7.1 Eliminate the Source 8.7.2 Good Layout and Supports 8.7.3 Preoperational Testing 8.7.4 Reducing Turbulence and Cavitation 8.7.5 Pulsation Damper 8.7.6 Damping 8.7.7 Flexible Connections 8.8 References

CHAPTER 9 FLUID TRANSIENTS

9.1 Single Liquid Phase 9.1.1 Bulk or Propagative Flow 9.1.2 Pressure Change in Bulk Flow 9.1.3 Waterhammer 9.1.4 Valve Characteristics 9.1.5 One-to-Two Phase Transient 9.1.6 Pump Fill Rate 9.1.7 Prevention of Liquid Waterhammer 9.2 Two-Phase Vapor-Liquid Waterhammer 9.2.1 Steam-Water Waterhammer 9.2.2 Case Histories 9.2.3 Predicting the Effects of Two-Phase Transients 9.2.4 Steam System Layout 9.3 Non-Condensable Two-Phase Waterhammer 9.3.1 Flow Regime 9.3.2 Analysis of Slug Flow 9.3.3 Trapped Air 9.4 Stress Analysis 9.5 References

CHAPTER 10 WIND DESIGN

10.1 Wind Damage 10.2 Wind Pressure 10.3 Vortex Shedding 10.4 Wind-Borne Missiles 10.5 References

CHAPTER 11 SEISMIC DESIGN AND RETROFIT

 11.1 The Seismic Challenge 11.2 Seismic Specification 11.2.1 Project Specification 11.2.2 Seismic Input 11.2.3 Seismic Qualification 11.2.3.1Operability 11.2.3.2 Leak Tightness 11.2.3.3 Position Retention 11.2.4 Material Condition 11.2.5 Interactions 11.2.6 Documentation 11.2.7 Maintenance 11.2.8 Definition of Common Terms 11.3 Rules of Good Practice 11.4 Seismic Analysis Techniques 11.5 Seismic Input Based on IBC 11.6 Seismic Response Spectra 11.6.1 Seismic Input 11.6.2 Modal and Directional Combinations 11.7 Seismic Qualification 11.8 Shake Table Testing 11.9 Seismic Interactions 11.9.1 Description 11.9.2 Interaction Review 11.9.3 Falling Interactions 11.9.4 Rocking or Swing Impact 11.9.5 Significant Impact 11.10 References

CHAPTER 12 EXPLOSIONS 12.1 Deflagration and Detonation 12.2 Dynamic Loads 12.3 Dynamic Properties 12.4 Pressure Limits 12.5 Design Criteria 12.5.1 Quasi-Static Load 12.5.2 Impulsive Load 12.5.3 Fracture 12.6 Explosion Protection 12.7 External Explosions 12.8 References

CHAPTER 13 SUBSEA PIPELINES

13.1 Subsea Pipeline Safety 13.2 Design Process 13.3 Internal Pressure 13.4 External Pressure 13.5 Pipe Lowering 13.6 On-Bottom Stability 13.6.1 Objective 13.6.2 Static Analysis 13.7 Pipeline Flotation 13.8 Fatigue Design 13.9 Hook and Pull 13.10 References

CHAPTER 14 BURIED PIPE

14.1 To Bury or not to Bury 14.2 Internal Pressure 14.3 Soil Loads 14.4 Surface Loads 14.5 Thermal Expansion and Contraction 14.6 Ground Movement 14.7 Seismic 14.8 References

CHAPTER 15 WELDING 15.1 Shop and Field Welding 15.2 Welding Processes 15.2.1 Shielded Metal Arc Welding 15.2.2 Submerged Arc Welding 15.2.3 Gas Metal Arc Welding 15.2.4 Flux Core Arc Welding 15.2.5 Gas Tungsten Arc Welding 15.2.6 Welding Parameters 15.2.7 Gas Purging 15.2.8 Mechanized Welding 15.3 Weld Defects 15.3.1 Weld Metallurgy 15.3.2 Porosities ' 15.3.3 Cracks 15.3.3.1 Hot Cracking 15.3.3.2 Delayed Cracking 15.3.4 Inclusions 15.3.5 Root Concavity and Undercut 15.3.6 Incomplete Penetration 15.3.7 Lack of Fusion 15.3.8 Shrinkage 15.4 Codes, Standards and Practice 15.4.1 ASMEB3 land API 1104 15.4.2 American Welding Society 15.4.3 Electrode Nomenclature 15.4.4 Welder and Weld Procedure Qualification 15.5 Post-Weld Heat Treatment 15.6 In-Service Welding 15.7 Surfacing Techniques 15.8 References

CHAPTER 16 EXAMINATION

16.1 Visual Examination 16.2 Magnetic Particles Testing 16.3 Liquid Penetrant Testing 16.4 Radiographic Testing 16.5 Ultrasonic Testing 16.6 Eddy Current Testing 16.7 Acoustic Emission Testing 16.8 Thermography 16.9 Measurement Accuracy 16.10 Type and Extent of Examinations 16.11 Acceptance Criteria 16.12 Personnel Certification 16.13 Pipeline Pigs 16.13.1 Utility Pigs 16.13.2 Smart Pigs 16.14 References

CHAPTER 17 PIPE FLANGE

17.1 Flange Standards 17.2 Flange Types 17.3 Flange Gaskets 17.3.1 Selection Factors 17.3.2 Non-Metallic Gaskets 17.3.3 Semi-Metallic Gaskets 17.3.4 Metallic Gaskets 17.4 Flange Faces 17.5 Flange Ratings 17.6 Flange Bolt Torque 17.7 External Loads 17.8 Assembly of Pipe Flanges 17.8.1 Assembly Steps 17.8.2 Closing the Gap 17.9 Nuts and Bolts 17.9.1 Definitions 17.9.2 Bolt Fabrication 17.9.3 Bolt Specifications 17.9.4 Nut, Washer Specifications 17.9.5 Restrictions 17.9.6 Corrosion Prevention 17.10 Maintenance 17.10.1 Flange Assembly Sequence 17.10.2 Replacing a Gasket 17.10.3 Welding a Slip-On Flange 17.10.4 Leakage Diagnostics 17.10.5 Refinishing Flange Faces 17.11 References

CHAPTER 18 MECHANICAL JOINTS

18.1 What they Are 18.2 Swage Firings 18.3 Grooved Fittings 18.4 In Conclusion

CHAPTER 19 LEAK AND PRESSURE TEST

19.1 Leak Test and Pressure Test 19.2 Leak and Pressure Test Methods 19.3 Choice of Test Method 19.4 Conduct of Test 9.4.1 Plan the Test 19.4.2 Conduct the Test 19.4.3 Plan for Leaks 19.4.4 Drain and Dry 19.5 Isolation 19.6 Locating Leaks Underground 19.7 References

CHAPTER 20 DEGRADATION IN SERVICE

20.1 A Critical Decision 20.2 General Corrosion 20.2.1 Progressive Corrosion 20.2.2 Passivating Coating 20.3 Local Corrosion 20.4 Galvanic Corrosion 20.5 Erosion Corrosion 20.6 Environmental Effects 20.7 Microbiologically Influenced Corrosion 20.8 High Temperature Effects 20.9 Mechanical Damage 20.10 Lining and Coating 20.10.1 Properties 20.10.2 Liquid Organics 20.10.3 Multilayer Coating 20.10.4 Metallic Coatings 20.11 Corrosion Inhibitors 20.12 Material Selection 20.13 References

CHAPTER 21 FITNESS-FOR-SERVICE

21.1 Fitness-for-Service 21.2 Wall Thinning 21.2.1 Measurement 21.2.2 Ductile Fracture Initiation 21.2.3 Longitudinal Thinning 21.2.4 Circumferential Thinning 21.2.5 Cautions 21.3 Crack Flaws 21.3.1 Brittle and Ductile Fracture 21.3.2 Fundamental Approach 21.3.3 Stress Intensity 21.3.4 Fitness-for-Service Evaluation 21.3.5 Crack Arrest 21.3.6 Fatigue 21.4 Mechanical Damage 21.4.1 Ripple 21.4.2 Buckle and Wrinkle 21.4.3 Dent 21.4.4 Dent with Gouge 21.5 References

CHAPTER 22 MAINTENANCE, RELIABILITY AND FAILURE ANALYSIS

 22.1 Case History 22.2 Maintenance Objective 22.3 Maintenance Plan 22.4 Maintenance Strategies 22.5 Corrective Maintenance 22.6 Failure Modes 22.7 Pro-Active Maintenance 22.7.1 Preventive or Predictive Maintenance 22.7.2 Inspection Checklists 22.7.2.1 Piping and Vessels 22.7.2.2 Supports 22.8 PDM Techniques 22.9 Reliability 22.10 Maintenance and the Construction Codes 22.11 Elements of Failure Analysis 22.11.1 Data Collection 22.11.2 Visual Examination, Macrofractography and NDE 22.11.3 Metallography and Microfractography 22.11.4 Chemical Analysis 22.11.5 Mechanical Tests 22.11.6 Stress and Fracture Analysis 22.11.7 Improvements 22.12 References

CHAPTER 23 REPAIR TECHNIQUES

23.1 Repair Strategy 23.2 Replacement 23.3 Grinding Out Defects 23.4 Weld Overlay 23.5 Full Encirclement Sleeve 23.6 Fillet Welded Patch 23.7 Flush Welded Patch 23.8 Welded Leak Box 23.9 Mechanical Clamp 23.10 Composite Overwrap 23.11 Buried Pipe Rehabilitation 23.12 Brushed and Sprayed Lining and Coating 23.13 Pipe Straightening 23.14 References

CHAPTER 24 PLASTIC PIPE

24.1 Plastic Form 24.2 Size 24.3 Chemical Resistance 24.4 Physical and Mechanical Properties 24.5 Pressure Design 24.6 Pressure Cycling Fatigue 24.7 Pressure Design of Fittings 24.8 Support Spacing 24.9 Fabrication and Examination 24.9.1 Solvent Cementing 24.9.2 Coated Adhesive 24.9.3 Butt Strap Adhesive 24.9.4 Hot Plate Butt Fused Joint 24.9.5 Hot Plate Socket Joint 24.9.6 Hot Air Welding 24.9.7 Electrofusion 24.9.8 Flange Joints 24.10 Bonding Qualification 24.11 References

CHAPTER 25 VALVES

25.1 Overview 25.2 Gate Valves 25.3 Globe Valves 25.4 Plug Valves 25.5 Ball Valves 25.6 Butterfly Valves 25.7 Diaphragm Valves 25.8 Check Valves 25.9 Safety and Relief Valves 25.10 Control Valves 25.11 Sizing Gas Control Valves 25.12 Valve Actuators 25.13 Closure Test

Last Date of Admission: 29th March, 2024
Online Admission:

All Rights Reserved by : Institute Of Modern Studies